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Efficient Core Maintenance in Large Dynamic
Graphs

Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao

Abstract—The k-core decomposition in a graph is a fundamental problem for social network analysis. The problem of k-core
decomposition is to calculate the core number for every node in a graph. Previous studies mainly focus on k-core decomposition in a
static graph. There exists a linear time algorithm for k-core decomposition in a static graph. However, in many real-world applications
such as online social networks and the Internet, the graph typically evolves over time. In such applications, a key issue is to maintain
the core numbers of nodes when the graph changes over time. A simple implementation is to perform the linear time algorithm to
recompute the core number for every node after the graph is updated. Such simple implementation is expensive when the graph is
very large. In this paper, we propose a new efficient algorithm to maintain the core number for every node in a dynamic graph. Our
main result is that only certain nodes need to update their core numbers when the graph is changed by inserting/deleting an edge.
We devise an efficient algorithm to identify and recompute the core numbers of such nodes. The complexity of our algorithm is
independent of the graph size. In addition, to further accelerate the algorithm, we develop two pruning strategies by exploiting the
lower and upper bounds of the core number. Finally, we conduct extensive experiments over both real-world and synthetic datasets,
and the results demonstrate the efficiency of the proposed algorithm.

Index Terms—Core maintenance, k-core decomposition, dynamic graphs

1 INTRODUCTION

IN the last decade, online social network analysis has
become an important topic in both research and indus-

try communities due to a huge number of applications. A
crucial issue in social network analysis is to identify the
cohesive subgroups of users in a network. The cohesive
subgroup denotes a subset of users who are well-connected
to one another in a network [1]. In the literature, there
are a number of metrics for measuring the cohesiveness
of a group of users in a social network. Examples include
cliques, n-cliques, n-clans, k-plexes, k-core, k-trusses and so
on [2].

For most of these metrics except k-core, the computa-
tional complexity is typically NP-hard or at least quadratic.
k-core, as an exception, is a well-studied notion in graph
theory and social network analysis [3]. Through-out the
paper, we will interchangeably use graph and network.
Given a graph G, the k-core is the largest subgraph of G
such that all the nodes in such a subgraph have degree
of at least k. For each node v in G, the core number of v
denotes the largest k such that a k-core exists and contains v.
The k-core decomposition in a graph G is the computation
of the core number for every node in G. There is a linear
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time algorithm, devised by Batagelj and Zaversnik [4], to
compute the k-core decomposition in a graph.

Besides the analysis of cohesive subgroup, k-core decom-
position has been recognized as a powerful tool to ana-
lyze the structure and function of a network, and it has
many applications. For example, the k-core decomposition
has been applied to visualize large networks [5], [6], to
map, model and analyze the topological structure of the
Internet [7], [8], to predict the function of protein in protein-
protein interaction network [9]–[11], to identify influential
spreader in complex networks [12], as well as to study
percolation on complex networks [13].

From the algorithmic perspective, efficient and scal-
able algorithms for k-core decomposition in a static graph
already exist [4], [14], [15]. However, in many real-world
applications, such as online social network and the Internet,
the network evolves over time. In such dynamic networks,
many applications require to maintain the core number for
every node online, given the network changes over time.
For example, in an application of k-core-based interactive
graph visualization [16], the graph is typically changed by
the users (insert or delete some edges). In such a case,
the visualization algorithm needs to update the core num-
bers of all the nodes online so that the algorithm can
dynamically adjust the layout of the graph. In addition,
for the applications of social network analysis, the algo-
rithms of maintaining the core numbers online can be used
to monitor the dynamics of cohesive subgroups. However,
in a dynamic network, it is difficult to update the core
numbers of nodes. The reason is as follows. An edge
insertion/deletion results in that the degree of two end-
nodes of the edge increase/decrease by 1. This may lead
to the updates of the core numbers of the end-nodes. Such

1041-4347 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2454 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 10, OCTOBER 2014

Fig. 1. Example graph.

updates may affect the core numbers of the neighbors of
the end-nodes which may need to be updated. In other
words, the update of the core numbers of the end-nodes
may spread across the network. For example, in Fig. 1, if we
insert an edge (v8, v10) into the graph, then the degree of v8
and v10 increase by 1. Suppose that the core numbers of v8
and v10 increase by 1, then we can see that such core num-
ber update leads to the core numbers of v10’s neighbors (v9,
v18, v11) that may need to be updated. And then the update
of core numbers of v10’s neighbors will result in the update
of core numbers of v10’s neighbors’ neighbors. This update
process may spread over the network. Therefore, it is hard
to determine which node in a network should update its
core number given the network changes.

To update the core number for every node in a dynamic
graph, in [17], Miorandi and Pellegrini propose to use the
linear algorithm given in [4] to recompute the core number
for every node in a graph. Obviously, such an algorithm is
expensive when the graph is very large. In this paper, we
propose an efficient algorithm to maintain the core number
for each node in a dynamic network. Our algorithm is based
on the following key observation. We find that only a cer-
tain number of nodes need to update their core numbers
when a graph is updated by inserting/deleting an edge.
Reconsider the example in Fig. 1. After inserting an edge
(v8, v10), we can observe that only the core numbers of the
nodes {v8, v10, v18, v9, v2} updates, while the core numbers
of the remaining nodes does not change. The key challenge
is how to identify the nodes whose core numbers need to be
updated. To tackle this problem, we propose a three-stage
algorithm to update the core numbers of the nodes. First,
we prove that the core numbers of the nodes who simulta-
neously satisfy the following two conditions may need to
be updated: (1) the nodes are reachable from the end-nodes
of the inserted/deleted edge, and (2) their core numbers
equal to the minimal core number of the end-nodes of the
inserted/deleted edge. Based on this, we propose a col-
oring algorithm to find such nodes whose core numbers
may need to be updated. Second, from the nodes found
by the coloring algorithm, we propose a recoloring algo-
rithm to identify the nodes whose core numbers definitely
need to be updated. Third, we update the core numbers
of such nodes by a linear algorithm. The major advantage
of our algorithm is that its time complexity is independent
of the graph size, and it depends on the size of the nodes
found by the coloring algorithm. To further accelerate our
algorithm, we develop two pruning techniques to reduce
the size of the nodes found by the coloring algorithm. In
addition, it is worth mentioning that the proposed algo-
rithm can also be used to handle a batch of edge insertions
and deletions by processing the edges one by one. Also,

the proposed technique can be applied to process node
insertions and deletions, because node insertions and dele-
tions can be simulated by a sequence of edge insertions and
deletions respectively. Finally, we perform extensive exper-
iments to evaluate our algorithms over both real-world and
synthetic datasets, and the results demonstrate the effi-
ciency of the algorithm. For example, in the real-world
datasets, our algorithm reduces the average update time
of the baseline algorithm up to 10231 times for handling a
single edge update.

The rest of this paper is organized as follows. We give
the problem statement in Section 2. We propose our basic
algorithm as well as the pruning strategies in Section 3.
Extensive experimental studies are reported in Section 4,
and the related work is discussed in Section 5. We conclude
this work in Section 6.

2 PRELIMINARIES

Consider an undirected and unweighted graph G = (V, E),
where V denotes a set of nodes and E denotes a set of
undirected edges between the nodes. Let n = |V| and m =
|E| be the number of nodes and the number of edges in
G, respectively. A graph G′ = (V′, E′) is a subgraph of G if
V′ ⊆ V and E′ ⊆ E. We give the definition of the k-core [3]
as follows.

Definition 1. Given a nonnegative integer k and a graph G.
The k-core (or a core of order k) is the largest subgraph G′ of
G where each node in G′ has at least a degree k.

The core number of a node v is defined as the largest
k such that the k-core exists and contains this node. We
denote the core number of node v as Cv. Note that the node
with a large core number is also in the low order core. That
is to say, the cores are nested. For example, assuming a
node v is in a 3-core, then node v is also in 2-core, 1-core
and 0-core.

Given a graph G, the problem of k-core decomposi-
tion is to calculate the core number for every node in
G. The following example illustrates the concept of k-core
decomposition in graph.

Example 1. Fig. 1 shows a graph G that contains 18 nodes,
i.e., v1, . . . , v18. By Definition 1, we can find that the
nodes v3, . . . , v7 form a 4-core. The reason is because the
induced subgraph by the nodes v3, . . . , v7 is the largest
subgraph in which the degrees of nodes are no less
than 4. Similarly, the subgraph induced by the nodes
v3, . . . , v7, v14, . . . , v17 is a 3-core, and the whole graph
G is a 2-core. Here we can find that the nodes v3, . . . , v7
are also in the 3-core and 2-core.

It is well known that the k-core decomposition in a static
graph can be calculated by an O(n + m) algorithm [4]. In
this paper, we consider the core maintenance problem in
dynamic graphs defined below.

Problem definition: Given a graph G = (V, E), and the
core numbers of all the nodes in G. The goal of the core
maintenance problem is to update the core numbers of all
the nodes in G when the graph G is changed by inserting
or deleting an edge.

The challenge in the above problem is that an edge inser-
tion or deletion may result in the core numbers of a number



LI ET AL.: EFFICIENT CORE MAINTENANCE IN LARGE DYNAMIC GRAPHS 2455

of nodes that need to be updated. Previous solution for this
problem [17] is to perform the O(n + m) core decomposi-
tion algorithm to re-compute the core number for every
node in the updated graph. Clearly, such algorithm is
expensive when the graph is very large. In the follow-
ing, we shall devise an efficient algorithm for this prob-
lem. Note that although the proposed algorithm is mainly
addressed to the core maintenance problem given the graph
is updated by one edge insertion or deletion, it can also be
used to process a batch of edge updates. Moreover, since
node insertions and deletions can be easily simulated as
a sequence of edge insertions and edge deletions respec-
tively, our algorithm can also be applied to handle node
updates.

3 THE PROPOSED ALGORITHM

Let N(v) be the set of neighbor nodes of node v, Dv be
the degree of node v, i.e., Dv = |N(v)|. Then, we give two
important quantities associated with a node v as follows.
Specifically, we define Xv as the number of v’s neigh-
bors whose core numbers are greater than or equal to
Cv, and define Yv as the number of v’s neighbors whose
core numbers are strictly greater than Cv. Formally, for
a node v, we have Xv = |{u:u ∈ N(v), Cu ≥ Cv}| and
Yv = |{u:u ∈ N(v), Cu > Cv}|. In effect, by definition, Xv
denotes the degree of node v in the Cv-core. It is important
to note that unless otherwise specified, here the definitions
of Dv, Cv, Xv, and Yv are based on the graph before updat-
ing. The following lemma shows that Cv is bounded by Yv
and Xv.

Lemma 1. For every node v of a graph G, we have Yv ≤ Cv ≤
Xv ≤ Dv.

Below, we define the notion of induced core subgraph.

Definition 2. Given a graph G = (V, E) and a node v, the
induced core subgraph of node v, denoted as Gv = (Vv, Ev),
is a connected subgraph which contains node v. Moreover,
the core numbers of all the nodes in Gv are equivalent
to Cv.

By Definition 2, the induced core subgraph of node v
includes the nodes such that they are reachable from v and
their core numbers are equal to Cv. Based on Definition 2,
we define the union of two induced core subgraphs.

Definition 3. For two nodes u and v and their corresponding
induced core subgraph Gu = (Vu, Eu) and Gv = (Vv, Ev),
the union of Gu and Gv is defined as Gu∪v = (Vu∪v, Eu∪v),
where Vu∪v = Vv

⋃
Vu and Eu∪v = {(vi, vj)|(vi, vj) ∈ E, vi ∈

Vu∪v, vj ∈ Vu∪v}.
It is worth mentioning that the union of two induced core
subgraphs is not necessarily connected.

Based on Definition 2 and 3, we present a k-core update
theorem as follows.

Theorem 1 (k-core update theorem). Given a graph G =
(V, E) and two nodes u and v. Then, after inserting or deleting
an edge (u, v) in G, we have the following results.

• If Cu > Cv, only the core numbers of nodes in the induced
core subgraph of node v, i.e., Gv, may need to be updated.

• If Cu < Cv, only the core numbers of nodes in the induced
core subgraph of node u, i.e., Gu, may need to be updated.

• If Cu = Cv, only the core numbers of nodes in the union
of two induced core subgraphs Gu and Gv, i.e., Gu∪v, may
need to be updated.

To prove Theorem 1, we first give some useful lemmas
as follows. The proofs can be easily obtained, thus we omit
them for brevity.

Lemma 2. If we insert (delete) an edge (u, v) in a graph G,
the core number of any node in G increases (decreases) by at
most 1.

Lemma 3. Given a graph G and two nodes u and v such that
Cu = Cv. If we insert an edge (u, v) in G, then either Cu and
Cv increase by 1 or Cu and Cv do not change.

Lemma 4. Given a graph G and an edge (u, v). Suppose that G
is updated by inserting or deleting an edge (u, v). Then, for
any node w in G, if the core number of w (Cw) needs to be
changed, such change only affects the core numbers of nodes
in Gw. If Cw does not change, then it does not affect the core
number of the nodes in G.

Armed with the above lemmas, we prove the k-core
update theorem as follows.

Proof of Theorem 1. For the insertion of an edge (u, v), we
consider three different cases: (1) Cu > Cv, (2) Cu < Cv,
and (3) Cu = Cv. For Cu > Cv, we know that node u
is in a higher order core than node v. By Definition 1,
adding a neighbor v with a small core number to a node
u does not affect Cu. Since Cu does not change, node u
will not affect the core numbers of the nodes in G (by
Lemma 4). Consequently, we only need to update the
core numbers of the nodes that are affected by node v. By
Lemma 4, if Cv changes, only the core numbers of nodes
in Gv may need to be updated. If Cv does not change,
then no node’s core number needs to be updated. This
proves the case (1). Symmetrically, we can use the sim-
ilar arguments to prove the case (2). For case (3), after
inserting an edge (u, v), by Lemma 3, either Cu and Cv
increase by 1 or Cu and Cv do not change. If Cu and Cv
do not change, by Lemma 4, we conclude that no node’s
core number needs to be updated. If Cu and Cv increase
by 1, by Lemma 4, the core numbers of the nodes in
Gu and Gv may need to be updated. That is to say,
the core numbers of the nodes in Gu∪v may need to be
updated.

Similarly, for the deletion of an edge (u, v), we also
consider three different cases: (1) Cu > Cv, (2) Cu < Cv,
and (3) Cu = Cv. The proofs of the first two cases are
very similar to those of the edge-insertion case, thereby
we omit them for brevity. For Cu = Cv, after deleting an
edge (u, v), if Cu and Cv do not change, we conclude that
no node’s core number needs to be updated according to
Lemma 4. If Cu changes, by Lemma 4, the core numbers
of nodes in Gu may need to be updated. Likewise, if
Cv changes, the core numbers of nodes in Gv may need
to be updated. To summarize, after removing an edge
(u, v), only the core numbers of the nodes in Gu∪v may
need to be updated. This completes the proof. �
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3.1 The Basic Algorithm
Based on the k-core update theorem, we present a basic
algorithm for core maintenance in a graph given that the
graph is updated by an edge insertion/deletion. Below,
we detail the algorithms for edge insertion and deletion
respectively.

Algorithm for edge insertion: Our main algorithm for edge
insertion consists of three steps. After inserting an edge
(u, v), by the k-core update theorem, only the core numbers
of nodes in the induced core subgraph (Gu, or Gv, or Gu∪v)
may need to be updated. Therefore, the first step of our
algorithm is to identify the nodes in the induced core sub-
graph. Let Vc be the set of nodes found in the first step. In
other words, Vc = Vu, or Vc = Vv, or Vc = Vu∪v. Then, the
second step of our algorithm is to determine those nodes
in Vc whose core numbers definitely need to be updated.
Finally, the third step of our algorithm is to update the core
numbers of such nodes.

The main algorithm for edge insertion, called Insertion,
is outlined in Algorithm 1. Algorithm 1 includes
three sub-algorithms, namely Color, RecolorInsert, and
UpdateInsert, which correspond to the first, the second,
and the third step of the main algorithm respectively. Before
we proceed further, we define an important concept “color”
which is frequently used in our algorithm. A color is a
0/1 value which is utilized to distinguish the nodes whose
core numbers need to be updated from those nodes whose
core numbers are unchanged. Initially, all the nodes are
assigned a color 0 (line 2 in Algorithm 1). Then, the algo-
rithm invokes Color to color all the nodes in Vc by a color 1
(line 6 and 11 in Algorithm 1), denoting that the core num-
bers of those nodes may need to be updated. Subsequently,
the algorithm invokes RecolorInsert to recolor the nodes
in Vc whose core numbers are definitely unchanged by
a color 0 (line 7 and 12 in Algorithm 1). After that, we
can get that the core numbers of the nodes in Vc with
color 1 has to be updated. Finally, the algorithm invokes
UpdateInsert to update the core numbers of such nodes
(line 8 and 13 in Algorithm 1). Recall that by the k-core
update theorem, the algorithm has to process three dif-
ferent cases: Cu > Cv, Cu < Cv, and Cu = Cv (line 4
and 9 in Algorithm 1). However, in Algorithm 1, the last
two cases can be merged (line 9-13 in Algorithm 1), and

we will interpret this point later. Below, we detail the
sub-algorithms, Color, RecolorInsert, and UpdateInsert.

To simplify our description, we mainly focus on describ-
ing the sub-algorithms under the case Cu = Cv, and similar
description can be used for other cases (Cu < Cv and
Cu > Cv). Suppose that node u and v have core num-
ber Cu = Cv = c. In this case, we have Vc = Vu∪v. By
Definition 3, finding the nodes in Vu∪v can be done by
a Breadth-First Search (BFS) algorithm. Color depicted in
Algorithm 2 is indeed such a BFS algorithm. By Color, all
the nodes in Vc are colored by a color 1. To find all the nodes
in Vu∪v, we can invoke Color(G, u, c). Note that after insert-
ing edge (u, v), the nodes that are reachable from v can also
be found by Color(G, u, c). Therefore, the coloring process
under the case Cu = Cv is the same as the coloring process
under the case Cu < Cv, where Color(G, u, c) is invoked to
find all the nodes in Vu. Since the subsequent processes in
Algorithm 1 are the same for all three cases, we can merge
these two cases (line 9-13 in Algorithm 1).

RecolorInsert described in Algorithm 3 is used to iden-
tify the nodes in Vc whose core numbers are definitely
unchanged. Specifically, Algorithm 3 recursively recolors
the nodes whose core numbers do not change by a color
0. Let X̃u be the sum of the number of node u’s neigh-
bors whose core numbers are larger than c and the number
of u’s neighbors whose color is 1. In each recursion, the
algorithm recomputes X̃u for each node u in Vc (line 4-7
in Algorithm 3). For a node u, if the current X̃u is smaller
than or equal to c, then the algorithm recolors it by 0 (line 8-
10 in Algorithm 3). The rationale is as follows. If X̃w ≤ c,
w has at most c neighbors whose core numbers are larger
than c after inserting an edge (u, v). As a result, Cw can-
not be updated, and thus the algorithm recolors it by 0. It
is important to note that this recoloring process may affect
the color of w’s neighbors. This is because before recoloring
w, w may contribute to calculate X̃z, where z is a neighbor
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of w. Consequently, the algorithm has to recursively recolor
the nodes in Vc. The recursion is terminated until no node
needs to be recolored. Note that Algorithm 3 is recursively
invoked at most |Vc| + 1 times, because the algorithm at
least recolors one node in one recursion in the worse case.
The following theorem shows that after Algorithm 3 termi-
nates, a node with a color 1 is a sufficient and necessary
condition for updating its core number.

Theorem 2. Under the case of insertion of an edge (u, v), the
core number of a node needs to be updated if and only if its
color is 1 after Algorithm 3 terminates.

Proof. First, we prove that if the core number of a node w
needs to be updated, then its color is 1 after Algorithm 3
terminates. We focus on the case of Cu = Cv = c, similar
proof can be used to prove the other two cases. By our
assumption and Lemma 4, we have w ∈ Vc, where Vc =
Vu∪v. Then, by Lemma 2, after inserting an edge (u, v),
the core number of the nodes in Vc increases by at most
1. Therefore, if Cw needs to be updated, then the updated
core number of w must be c + 1. That is to say, node w
must have c+1 neighbors whose core numbers are larger
than or equal to c + 1. Now assume that the color of
node w is 0. This means that X̃w ≤ c when Algorithm 3
terminates. This result implies that node w has at most c
neighbors whose core numbers are larger than c, which
is a contradiction.

Second, we prove that if a node has a color 1 after
Algorithm 3 terminates, then the core number of this
node must be updated. Let V1 be a set of nodes with
color 1 after Algorithm 3 terminates, and V>c be a set of
nodes whose core numbers are greater than c. Denote by
G� = (V1 ∪ V>c, E�) an subgraph induced by the nodes
V1∪V>c. Consider a node w in such an induced subgraph
G�. Clearly, if w has a color 1 (i.e., w ∈ V1), then it has
X̃w (X̃w > c) neighbors in G�. If w has a color 0 (i.e.,
w ∈ V>c), then its core number Cw is larger than c. By
Definition 1, the induced subgraph G� belongs to the
(c+1)-core. Therefore, the core number of a node w with
color 1 is at least c + 1. By Lemma 2, after inserting an
edge (u, v), the core number of any nodes in graph G
increases by at most 1. Consequently, the core number
of the nodes with color 1 increases by 1.
UpdateInsert outlined in Algorithm 4 increases the core

numbers of the nodes in Vc with color 1 to c + 1, because
only the core numbers of those nodes increase by 1 after
the coloring and recoloring processes. The correctness of
our algorithm for edge insertion can be guaranteed by
Theorem 1 and Theorem 2. The following example explains
how the Insertion algorithm works.

Example 2. Let us consider the same graph given in
Fig. 1. Assume that we insert an edge (v8, v10), which
results in a graph given in Fig. 2. In Fig. 2, the dashed
line denotes the inserted edge. Since Cv8 = Cv10 =
c = 2, the Insertion algorithm first invokes Color(G,

Fig. 2. Graph after inserting an edge (v8, v10).

v8, 2). After this process, we can get that Vc =
{v8, v10, v9, v2, v1, v18, v11, v12, v13}. And all the nodes in
Vc are colored by 1 and the other nodes are colored by
0. Then, the algorithm invokes RecolorInsert(G, 2). At
the first recursion, we can find that X̃v1 = 2, thereby
it is recolored by 0. Also, the node V12 is recolored
by 0, because X̃v12 = 2. At the second recursion, we
can find that the nodes v11 and v13 are recolored by
0. At the third recursion, no node needs to be recol-
ored, the algorithm therefore terminates. After invoking
RecolorInsert(G, 2), the nodes {v8, v10, v9, v2, v18} are col-
ored by 1, thereby their core numbers must increase to 3
by Theorem 2. Finally, the Insertion algorithm invokes
UpdateInsert(G, 2) to update the core numbers of such
nodes. As a consequence, the core numbers of the nodes
{v8, v10, v9, v2, v18} is increased to 3.

We analyze the time complexity of the Insertion
algorithm as follows. First, the Color algorithm takes
O(

∑
u∈Vc

Du) time complexity. Second, the RecolorInsert
algorithm takes O(|Vc| ∑u∈Vc

Du) time complexity in the
worse case, as the algorithm is recursively invoked at
most O(|Vc|) times and each recursion takes O(

∑
u∈Vc

Du)

time complexity. Finally, the UpdateInsert algorithm takes
O(|Vc|) time complexity. Put it all together, the time com-
plexity of the Insertion algorithm is O(|Vc| ∑u∈Vc

Du) in
the worse case, which is independent of the graph size.
However, in practice, the algorithm is more efficient than
such worse-case time complexity. The reasons are twofold.
On the one hand, |Vc| is typically not very large w.r.t.
the number of nodes of the graph (we will show this
in the experiments). On the other hand, very often, the
RecolorInsert algorithm terminates very fast.

Algorithm for edge deletion: The main algorithm
for edge deletion, namely Deletion, is outlined in
Algorithm 5. Similar to the edge insertion case, Deletion
also includes three sub-algorithms: Color, RecolorDelete,
and UpdateDelete. Here Color is used to find the nodes
in the induced core subgraph, RecolorDelete is utilized to
identify the nodes whose core numbers need to be updated,
and UpdateDelete is applied to update the core num-
bers of the nodes identified by RecolorDelete. The detailed
description of Deletion is given as follows.

Similarly, let Vc be a set of nodes whose core numbers
may need to be updated. First, Algorithm 5 initializes the
color of all the nodes to 0 and Vc to an empty set. Likewise,
under the edge deletion case, we also have to consider three
cases. That is, Cu > Cv, Cu < Cv, and Cu = Cv. Here we only
focus on the Cu = Cv, because the other two cases are very
similar to the edge-insertion cases. For the Cu = Cv case, the
algorithm first invokes Color(G, u, c) to find the nodes in Gu
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(line 16 in Algorithm 5). Then, the algorithm has to handle
two different cases. First, if u can reach v, then the coloring
algorithm can also find the nodes in Gv (in this case, v’s
color is 1, line 22 in Algorithm 5). Second, if u cannot reach
v (v’s color is 0), then the algorithm invokes Color(G, v,
c) to find the nodes in Gv (line 19 in Algorithm 5). After
this process, all the node in Gu∪v are recorded in Vc. Then,
we can invoke RecolorDelete(G, c) and UpdateDelete(G, c)
algorithms to update the core numbers of the nodes in Vc.
Below, we give the detailed descriptions of RecolorDelete
and UpdateDelete respectively.

RecolorDelete recursively recolors the nodes whose core
numbers need to be updated by a color 0. In each recur-
sion, the algorithm calculates X̃w for every node w in
Vc. Similarly, here X̃w denotes the sum of the number of
w’s neighbors whose color is 1 and the number of w’s
neighbors whose core numbers are larger than c, where
c = min{Cu, Cv}. For a node w ∈ Vc, if Xw < c, then the
algorithm colors w by a color 0. The algorithm terminates
if no node needs to be recolored. Clearly, the algorithm is
invoked at most |Vc| times. The following theorem shows
that a node in Vc with a color 0 after Algorithm 6 termi-
nates is a sufficient and necessary condition for updating
its core number.

Theorem 3. Under the case of deletion of an edge (u, v), a node
in Vc whose core number needs to update if and only if its
color is 0 after Algorithm 6 terminates.

Proof. First, we prove that if a node w in Vc whose
core number needs to be updated, then its color is 0
after Algorithm 6 terminates. By our assumption and
Lemma 2, after deleting an edge (u, v), Cw decreases by
1. This means that Cw decreases to c − 1. That is to say,
w has c − 1 neighbors whose core numbers are no less

than c − 1. Suppose that the color of w is 1 after the
algorithm terminates. This implies that Xw ≥ c. Recall
that Xw denotes the sum of the number of w’s neighbors
whose core numbers are larger than c and the number
of w’s neighbors whose color is 1. Note that a node with
color 1 suggests that its core number equals to c. As a
result, w has at least c neighbors whose core numbers
are larger than or equal to c, which is a contradiction.

Second, we prove that if a node w in Vc is recolored by
0 after Algorithm 6 terminates, then Cw must be updated.
Let V>c be a set of nodes whose core numbers are larger
than c. Then, after deleting an edge (u, v), we construct
an induced subgraph by the nodes in Vc ∪ V>c, which is
denoted as G� = (Vc ∪ V>c, E�). Note that the core num-
bers of the nodes in V\{Vc ∪ V>c} are smaller than c.
Therefore, they do not affect the core numbers of the
nodes in Vc ∪ V>c. If a node w ∈ Vc with a color 0
after Algorithm 6 terminates, then Xw < c. This suggests
that the node w in G� has at most c − 1 neighbors. By
Definition 1, G� at most belongs to the (c − 1)-core. By
Lemma 2, the core number of any nodes in G decreases
by at most 1 after deleting an edge. Therefore, the core
numbers of the nodes in Vc with color 0 decrease by 1.
This completes the proof.
UpdateDelete which is depicted in Algorithm 7 is used

to update the core numbers of the nodes in Vc with color
0 to c − 1, because only the core numbers of those nodes
need to decrease by 1 after the coloring and recoloring
steps. The correctness of Deletion can be guaranteed by
Theorem 1 and Theorem 3. By a similar analysis as the
edge insertion case, the time complexity of Deletion(G, u,
v) is O(|Vc| ∑u∈Vc

Du). The following example explains how
Deletion works.

Example 3. Let’s consider the graph depicted in Fig. 2.
Suppose that we delete the edge (v8, v10). Since Cv8 =
Cv10 = c = 3, the Deletion algorithm first invokes
Color(G, v8, 3), which results in Vc = {v8}. Clearly,
the color of v10 is 0 after this process ends. Hence,
the algorithm invokes Color(G, v10, 3), which leads to
Vc = {v8, v10, v9, v2, v18}. After this process, all the nodes
in Vc are colored by 1 and other nodes are colored by
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Fig. 3. Toy induced core subgraph.

0. Then, the algorithm invokes RecolorDelete(G, 3). At
the first recursion, since X̃v8 = 2, v8 is recolored by 0.
Similarly, v10, v9, v2, and v18 will be recolored by 0 at
the first recursion. At the second recursion, the algo-
rithm terminates because no node needs to be recolored.
Therefore, all the nodes in Vc are recolored by 0. Finally,
the algorithm invokes UpdateDelete(G, c) to decrease
the core numbers of all the nodes in Vc to 2.

3.2 Pruning Strategies
As analysis in the previous subsection, the time complex-
ity of the Insertion and Deletion algorithms depend on
the size of Vc. In this subsection, to further accelerate our
algorithms, we devise two pruning techniques, namely X-
pruning and Y-pruning, to remove the nodes in Vc whose
core numbers are definitely unchanged given the graph is
updated.

X-pruning: By Lemma 1, for a node w, Xw is an upper
bound of Cw. Here we make use of such upper bound to
develop pruning technique. We refer to it as X-pruning.
Below, we discuss the X-pruning technique over the edge
insertion and edge deletion cases, respectively.

First, we consider the insertion case. Assume that we
insert an edge (u0, v0). Also, we need to consider three
cases, Cu0 > Cv0 , Cu0 < Cv0 , Cu0 = Cv0 . Below, we mainly
focus on describing the X-pruning rule under the case of
Cu0 = Cv0 , and similar descriptions can be used for the
other two cases. For a node w in Vc, after inserting an edge
(u0, v0), if Xw equals to c, then Cw cannot increase to c + 1.
As a result, we can safely prune w. For example, consider
an graph in Fig. 2. Assume that we insert an edge (v8, v10).
Then, for the node v1, we have Xv1 = 2. Clearly, Cv1 cannot
increase to 3, thereby we can prune v1.

In effect, after removing w, for the nodes that cannot be
reachable from u0 and v0 in the induced core subgraph can
also be pruned. Let us consider a toy induced core subgraph
shown in Fig. 3. Suppose that the induced core subgraph
can be partitioned into three parts, S1, w, and S2. Further,
we assume that both u0 and v0 are in S1, and Xw = c. Recall
that after inserting an edge (u0, v0), if Xw = c, then Cw is
unchanged. By Lemma 4, w will not affect the core numbers
of the nodes in S2. As a consequence, the core numbers
of the nodes in S2 cannot be increased, and we can safely
prune all the nodes in S2. More formally, we give a pruning
theorem as follows. The proof can be easily obtained, we
omit it for brevity.

Theorem 4. Given a graph G and an edge (u0, v0). After insert-
ing an edge (u0, v0) in G, for a node w ∈ Vc and Xw < c+1,
we have the following pruning rules.

• If Cu0 > Cv0 (i.e., Vc = Vv0 ), then for any node u ∈ Vc
that every path from v0 to u in Gv0 must go through w
can be pruned.

• If Cu0 < Cv0 (i.e., Vc = Vu0 ), then for any node u ∈ Vc
that every path from u0 to u in Gu0 must go through w
can be pruned.

• If Cu0 = Cv0 (i.e., Vc = Vu0∪v0 ), then for any
node u ∈ Vc that every path either from u0 to u or
from v0 to u in Gu0∪v0 must go through w can be
pruned.

Based on Theorem 4, we can prune certain nodes in the
coloring procedure (the Color algorithm). We present our
new coloring algorithm with X-pruning in Algorithm 8. The
new coloring algorithm is still a BFS algorithm. The algo-
rithm first calculates Xu when it visits a node u (line 4-5 in
Algorithm 8). If Xu ≤ c, the BFS algorithm does not need to
traverse u by Theorem 4. If Xu > c, the algorithm visits u’s
neighbors to check whether they are in Vc or not (line 6-9 in
Algorithm 8), and then the algorithm adds node u into Vc
and color it by 1 (line 10-11 in Algorithm 8). To implement
this pruning strategy, we can replace the Color algorithm
with the XPruneColor algorithm in Algorithm 1.

Second, we consider the edge deletion case. Suppose that
we delete an edge (u0, v0) from graph G and the core num-
bers of all the nodes in Vc are c. We consider three different
cases: (1) Cu0 > Cv0 , (2) Cu0 < Cv0 , and (3) Cu0 = Cv0 . For
Cu0 > Cv0 , we only need to find the nodes in Gv0 , because
the deletion of edge (u0, v0) does not affect the core num-
bers of the nodes in Gu0 . Recall that after deleting an edge,
the core numbers of the nodes in Vc decrease by at most
1. Therefore, after deleting an edge (u0, v0), if Xv0 ≥ c,
then v0’s core number will not be changed. This is because
Xv0 ≥ c implies v0 has at least c neighbors whose core num-
bers are larger than or equal to c. That is to say, the core
number of node v0 is still c. Since v0’s core number does
not change, we do not need to update the core numbers of
the nodes in Gv0 . As a result, under the case of Cu > Cv in
Algorithm 5 (line 4 in Algorithm 5), we can first compute
Xv. If Xv ≥ c, we do nothing. Symmetrically, for Cu0 < Cv0 ,
we have a similar pruning rule as the case of Cu0 > Cv0 .
For Cu0 = Cv0 , we first compute Xu0 and Xv0 . If Xu0 < c,
then we need to update the core numbers of the nodes in
Gu0 . Also, if Xv0 < c, we update the core numbers of the
nodes in Gv0 . For the case that Xu0 ≥ c and Xv0 ≥ c, we
do nothing, because no node’s core number needs to be
updated. It is worth mentioning that Xu0 and Xv0 are com-
puted based on the core numbers of the nodes that have
not been updated. The detailed algorithm with X-pruning
for the edge deletion case can be easily implemented, we
thus omit it for brevity.



2460 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 10, OCTOBER 2014

Y-pruning: For a node w, Yw is a lower bound of Cw by
Lemma 1. Here we develop a pruning technique using such
lower bound, and we refer to this pruning technique as
Y-pruning.

To illustrate our idea, let us reconsider the toy induced
core subgraph shown in Fig. 3 which includes three parts,
S1, w, and S2. Suppose that we insert or delete an edge
(u0, v0). Below, we focus on the case of Cu0 = Cv0 = c,
and similar descriptions can be used for other two cases.
Further, we assume that both u0 and v0 are in S1, and Yw =
c. First, we consider the insertion case, i.e., an edge (u0, v0)

insertion. In this case, we claim that the core numbers of
the nodes in S2 are unchanged. The reason is as follow. Let
u in S2 be a neighbor node of w. Then, for any neighbor
u, we have Yu < c (if not, u and w will be in a (c + 1)-
core). This implies that for each neighbor of w in S2, the
core number cannot increase to c+1 after inserting (u0, v0).
As a result, the core numbers of all the nodes in S2 will
not change after inserting (u0, v0). Second, for the deletion
case, if we delete an edge (u0, v0), Cw is still equal to c
because w has c neighbors whose core numbers are larger
than c (Yw = c). Clearly, the core numbers of the nodes in
S2 are also unchanged. Put it all together, under both edge
insertion and edge deletion cases, the core numbers of all
the nodes in S2 will not change, and thereby we can safely
prune the nodes in S2. Formally, for Y-pruning, we have
the following theorem.

Theorem 5. Given a graph G and an edge (u0, v0). After insert-
ing/deleting an edge (u0, v0) in G, for a node w ∈ Vc, if
Yw = c, then we have the following pruning rules.

• If Cu0 > Cv0 (i.e., Vc = Vv0 ), then for any node u ∈ Vc
and u 	= w that every path from v0 to u in Gv0 must go
through w can be pruned.

• If Cu0 < Cv0 (i.e., Vc = Vu0 ), then for any node u ∈ Vc
and u 	= w that every path from u0 to u in Gu0 must go
through w can be pruned.

• If Cu0 = Cv0 (i.e., Vc = Vu0∪v0 ), then for any node
u ∈ Vc and u 	= w that every path either from u0 to
u or from v0 to u in Gu0∪v0 must go through w can be
pruned.

Proof. We prove this theorem under the case Cu0 = Cv0 ,
and for other cases, we have similar proofs. Below, we
discuss the proofs for the edge insertion and edge dele-
tion cases, respectively.

First, we prove the edge insertion case. Let V>c be
a set of nodes whose core numbers are larger than c.
Assume that we remove w from Vc. Then, after removing
w, we denote a set of nodes in Vc that cannot be reach-
able either from u0 or from v0 as V1. Then, after inserting
an edge (u0, v0), we consider two cases: (1) w’s core num-
ber will not change, and (2) w’s core number increases by
1. The first case suggests that w is still in the c-core, and
we can safely remove w from Vc. Therefore, for the nodes
in V1, we can also remove them from Vc, because only
the core numbers of those nodes that are reachable from
u0 or v0 may need to be updated. Second, we consider
the case that w’s core number increases by 1 after insert-
ing an edge (u0, v0). We denote a subset of nodes in Vc
whose core numbers increase by 1 as Ṽc after inserting

an edge (u0, v0). Further, we denote a subset of nodes in
V1 whose core numbers need to increase by 1 as V2. In
other words, V2 = V1

⋂
Ṽc. Clearly, the theorem holds if

V2 = ∅. Now we prove this by contradiction. Specifically,
we assume that V2 	= ∅. By definition, after inserting
an edge (u0, v0), the induced subgraph by the nodes in
Ṽc

⋃
V>c forms a (k + 1)-core. We denote such subgraph

as G′ = (V′, E′), where V′ = Ṽc
⋃

V>c. Clearly, all the
nodes in G′ has at least a degree c + 1. Now consider
a subgraph G� induced by the nodes in V2

⋃{w}⋃
V>c.

We claim that all the nodes in G� has at least a degree
c + 1. First, for the nodes in V>c, their degree is obvi-
ously greater than c+1 w.r.t. G�. Second, we consider the
nodes in V2. By definition, in graph G′, there is no edge
between the nodes in V2 and the nodes in Ṽc\{V2

⋃{w}}.
Since the nodes in V2 have at least a degree c + 1 w.r.t.
graph G′, they also have at least a degree c+1 w.r.t. graph
G�. Third, we consider the node w. On the one hand, we
claim that w has at least one neighbor in V2. Suppose w
has no neighbor in V2, then the nodes in V2 whose core
numbers cannot increase to c + 1 after inserting an edge
(u0, v0) by the k-core update theorem, which contradict
to our assumption. Hence, w has at least one neighbor in
V2. On the other hand, since Yw = c, w has c neighbors
whose core numbers are larger than c. As a result, w has
at least a degree c + 1 w.r.t. graph G�. Put it all together,
all the nodes in G� have at least a degree c + 1. Note
that by our definition the induced subgraph G� does not
contain node u0 and v0. Consequently, before inserting
the edge (u0, v0), the core numbers of the nodes in G�

are at least c + 1. That is to say, the nodes in V2 has core
number c + 1 before inserting the edge (u0, v0), which
is a contradiction. This completes the proof for the edge
insertion case.

For the edge deletion case, after deleing an edge
(u0, v0), the core numbers of all the nodes in Vc decrease
by at most 1 according to Lemma 2. Hence, if a node
w ∈ Vc has Yw = c, then w’s core number will not
decrease. Similarly, let V>c be a set of nodes whose core
numbers are larger than c. And assume that we remove
w from Vc. Then, after removing w, we denote a set of
nodes in Vc that cannot be reachable either from u0 or
from v0 as V1. Now consider a subgraph G� induced by
the nodes V1

⋃{w}⋃
V>c. We claim that all the nodes

in such subgraph have at least a degree c. First, for the
nodes in V>c, their degree is clearly larger than c w.r.t.
G� because their core numbers are larger than c. Second,
w’s degree is at least c w.r.t. G�, because w has c neigh-
bors whose core numbers are larger than c. Third, for
the nodes in V1, their degree is also at least c w.r.t. G�.
The rationale is as follows. By definition, no edge in G
goes through the nodes in Vc\{V1 ∪ {w}} and the nodes
in V1. Since the core numbers of the nodes in V1 are
c, the nodes in V1 has at least c neighbors w.r.t. G�.
Consequently, the core numbers of the nodes in G� are
still c after removing the edge (u0, v0). This implies that
the nodes in V1 can be pruned, which completes the
proof for the edge deletion case.
Based on Theorem 5, we can implement the Y-pruning

strategy in the coloring procedure. We present our new col-
oring algorithm with Y-pruning in Algorithm 9, which is



LI ET AL.: EFFICIENT CORE MAINTENANCE IN LARGE DYNAMIC GRAPHS 2461

also a BFS algorithm. In particular, when the algorithm vis-
its a node u, it first calculates Yu (line 4-5 in Algorithm 9). If
Yu < c, the algorithm visits u’s neighbors to check whether
they are in Vc or not (line 6-9 in Algorithm 9) or not. If
Yu = c, the algorithm does not need to traverse u’s neigh-
bors by Theorem 5. Under both cases (i.e., Yu < c and
Yu = c), the algorithm adds u into Vc, and color it by
1 (line 10-11 in Algorithm 9). Below, we discuss how to
integrate the YPruneColor algorithm into the Insertion and
Deletion algorithm.

First, to integrate the YPruneColor algorithm into the
Insertion algorithm, we need to replace the Color algo-
rithm with the YPruneColor algorithm as well as handle
the following special case. That is, if Cu0 = Cv0 = c, Yu0 = c
and Yv0 < c, we need to invoke YPruneColor(G, v0, c). If
Cu0 = Cv0 = c, Yu0 < c and Yv0 = c, we have to invoke
YPruneColor(G, u0, c). The reason is because we need to
allow the BFS algorithm to go through the edge (u0, v0) in
order to add both u0 and v0 into Vc. If Cu0 = Cv0 = c and
Yu0 = Yv0 = c, then we have to invoke both YPruneColor(G,
u0, c) and YPruneColor(G, v0, c) so as to add both u0 and
v0 into Vc. Second, to integrate the YPruneColor algorithm
into the Deletion algorithm, we only need to replace the
Color algorithm with the YPruneColor algorithm.

Combination of X-pruning and Y-pruning: Here we dis-
cuss how to combine both X-pruning and Y-pruning for
edge insertion case and edge deletion case, respectively. For
edge insertion case, we can integrate both X-pruning and
Y-pruning into the coloring procedure. Specifically, in the
coloring procedure, when the BFS algorithm visits a node
u, we calculate both Xu and Yu. Then, we use the X-pruning
rule to determine the color of node u, and make use of both
X-pruning and Y-pruning rules to determine whether the
algorithm visits u’s neighbors or not. For the edge deletion
case, we can easily integrate both X-pruning and Y-pruning
via the following two steps. First, we replace the Color
algorithm in Deletion with the YPruneColor algorithm.
Second, we integrate the X-pruning rule into the Deletion
algorithm.

3.3 Discussions
Here we present an extension of the proposed algorithm
with a cache strategy to handle very large graphs which
cannot fit into internal memory. We assume that the internal
memory can hold �(n) data, but cannot hold all the edges
of the graph. Note that this assumption typically holds for
most publicly available real-world networks. For example,

TABLE 1
Summary of the Datasets

a very common PC with 4G internal memory can hold a
network with 100 million nodes. Under this assumption,
the core number of each node and all the other arrays with
size �(n) in our algorithm (e.g., the visited array, the color
array, and so on) can be stored in internal memory. Further,
we assume that the graph is represented by adjacency lists.
By our assumptions, the adjacency list of each node can
be loaded in internal memory by constant I/O. Indeed, if
we set the buffer size as �(n), each node’s adjacency list
can be loaded in memory by one I/O. In the worse case, it
is easy to derive that the coloring algorithm (Algorithms
2,8, and 9) takes at most O(|Vc|) I/O. Notice that with
both X-pruning and Y-pruning, |Vc| is very small for most
real-world graphs as observed in the experiments, thus the
coloring algorithm is very efficient. To further reduce the
I/O cost of the coloring algorithm, we can maintain the
low-degree nodes’ adjacency lists in the internal memory
when the memory is sufficient. Since most nodes in the
real-world networks are low-degree nodes, we can cache
a large number of low-degree nodes’ adjacency lists, thus
cutting the I/O cost.

For the recoloring algorithm (Algorithms 3 and 6), we
adopt the following cache strategy. For a node u in Vc,
we cache u’s neighbors with core number larger than c.
Note that this can be done by a simple modification of the
coloring algorithm. That is to say, we cache several par-
tial adjacency lists of the nodes in |Vc|. In effect, since |Vc|
is very small, all such partial adjacency lists of the nodes
in |Vc|, in many cases, can be cached in internal mem-
ory. Under these cases, the recoloring algorithm will not
take any I/O cost. However, when the internal memory
cannot cache all the partial adjacency lists, we apply the
well-known LRU (least recently used) replacement strat-
egy to replace the blocks. In addition, we use the following
strategy to further reduce the I/O cost. In each iteration
of the recoloring algorithm, when a node is recolored, we
can safely delete this node’s partial adjacency list from the
internal memory. For the core number updating algorithms
(Algorithms 4 and 7), no I/O cost is taken, as Vc can hold
in internal memory.

4 EXPERIMENTS

Different algorithms: We evaluate five different algorithms.
The baseline algorithm is the algorithm that invokes the
O(n + m) algorithm to update the core numbers when
the internal memory is sufficient [17]. However, when the
memory is insufficient, the baseline algorithm invokes the
external k-core decomposition algorithm proposed in [14]
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TABLE 2
Average Update Time of Different Algorithms

The default time unit is millisecond, and ‘s’ denotes second.

to update the core numbers. We denote the baseline algo-
rithm as algorithm B. For the proposed algorithms, we have
four variants. The first algorithm, denoted as algorithm N,
is the basic algorithm without pruning strategy. The other
three algorithms, denoted as algorithm X, Y, and XY, are
the basic algorithm with X-pruning, Y-pruning, and both
X and Y-pruning respectively.

Datasets: In the experiments, we collect eight real-world
datasets which are summarized in Table 1. The first four
datasets (Slashdot, Gowalla, WebGoogle, and Pokec) are
static networks datasets which can be holden in internal
memory. The Orkut and Wikipedia are two massive static
social network datasets which cannot be completely holden
in internal memory, but the nodes of these networks can
be stored in memory. The last two datasets (Flickr and
Youtube) are real-world dynamic social network datasets
where the temporal information of each edge is available.
We get the first five datasets from Stanford network data
collections [18], the Wikipedia dataset from [19], and the
last two datasets from [20] and [21] respectively.

Experimental environment: We conduct the experiments
on a Windows Server 2007 with 4xDual-Core Intel Xeon
2.66 GHz CPU, and 8G memory. All algorithms are imple-
mented in C++.

4.1 Experimental Results
Without specifically stated, in all the experiments, we ran-
domly delete and insert 500 edges for the original static
datasets. For each dynamic dataset (Flickr and Youtube),
we randomly choose a time point t to extract two snap-
shots, say G1 and G2. Note that G1 is a subgraph of G2,
i.e., G2 includes edges that are inserted after time t. Since
the original dynamic datasets only record the edge inser-
tion time [20], [21], for a fair comparison with the static
networks, we consider the first 500 edge insertions in G2
(w.r.t. G1), and then randomly delete them to generate 500
edge deletions. For all the datasets, we invoke five different
algorithms to update the core numbers of the nodes after
an edge update. For all algorithms, we record three quanti-
ties, namely average insertion time, average deletion time,
and average update time, to measure the efficiency. We cal-
culate the average insertion (deletion) time by the average
core number update time of different algorithms over all the
edge insertions (deletions). The average update time is the
mean of average insertion time and average deletion time.
To evaluate the efficiency of our algorithms (algorithm N,
algorithm X, algorithm Y, algorithm XY), we compare them

with the baseline algorithm (algorithm B) according to the
average insertion/deletion/update time.

We first discuss the case that the internal memory is suf-
ficient to hold the graph. The results under this case are
reported in Table 2. From Table 2, we can see that all of our
algorithms (algorithm N, algorithm X, algorithm Y, algo-
rithm XY) perform much better than the baseline algorithm
(algorithm B) over all the datasets used. The best algorithm
is the algorithm XY, which is the basic algorithm with both
X-pruning and Y-pruning, followed by algorithm X, algo-
rithm Y, algorithm N, and algorithm B. Over all the datasets
used, the maximal speedup of our algorithms is achieved
in Pokec dataset (the fourth row in Table 2). Specifically,
in Pokec dataset, algorithm XY, algorithm X, algorithm Y
and algorithm N reduce the average update time of algo-
rithm B by 10231, 8035, 6724, and 5739 times respectively.
In general, we find that the speedup of our algorithms
increases as the graph size increases. This is because the
time complexity of the baseline algorithm is linear w.r.t.
the graph size for handling each edge insertion/deletion.
Instead, the time complexity of our algorithms is indepen-
dent of the graph size, and it only depends on |Vc|, which
is the size of the induced core subgraph. Moreover, we
find that our basic algorithm with pruning techniques is
significantly more efficient than the basic algorithm with-
out pruning technique. In addition, we can observe that
the performance of our algorithms in real-world dynamic
graphs (Flickr and Youtube) is desired. For example, the
XY algorithm cuts the average update time of the baseline
algorithm by 10089 and 8262 times in Flickr and Youtube
datasets respectively.

Second, we consider the case that the entire graph can-
not stored in internal memory. In this experiment, we use
6G memory to cache the low degree nodes’ adjacency lists.
The results are described in Table 3. Here we only report the
average update time, and similar results can be observed
for the average insertion/deletion time. In Table 3, the first
and third rows denote the total running time of different
algorithms, while the second and fourth rows denote the

TABLE 3
Average Update Time of Different Algorithms in Disk-Resident

Graphs (s: second, m: minute)
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TABLE 4
Average |Vc | of Different Algorithms

I/O time of different algorithms. As can be seen, all of
our algorithms outperform the baseline algorithm. Similar
to the previous results, the best algorithm is the XY algo-
rithm, followed by the algorithm X, Y, N, and B. The XY
algorithm improves the total running time of algorithm
B by 283 and 33 times in Orkut and Wikipedia datasets
respectively. Moreover, we can observe that the running
time of our algorithm is dominated by the I/O time. This is
because our algorithms only work on the nodes in Vc which
is very small w.r.t. the graph size, thus the CPU time is very
small regarding to the I/O time. Additionally, we can find
that the performance of our algorithms in Orkut dataset is
better than those in Wikipedia dataset. The reason is that
the size of the Orkut dataset is significantly smaller than
that of the Wikipedia dataset, thus we can maintain much
more low-degree nodes’ adjacency lists in internal memory
to reduce the I/O cost.

The size of Vc: Table 4 reports the average |Vc| of the pro-
posed algorithms in all the datasets used. As can be seen
from Table 4, algorithm XY has the smallest average |Vc|.
The average |Vc| of algorithm X is smaller than that of algo-
rithm Y over all the datasets, indicating that the X-pruning
strategy is more powerful than the Y-pruning strategy. As
desired, algorithm X, Y, and XY has smaller |Vc| than algo-
rithm N. In general, the average |Vc| for all the proposed
algorithms is very small w.r.t. the graph size. Moreover,
we can find that |Vc| is independent of the graph size. For
example, in Slashdot dataset (the second row), which is a
relatively small dataset, the average |Vc| of algorithm XY is
113.1. However, in Gowalla dataset (the third row), which
is a relatively large dataset, the average |Vc| of algorithm
XY is only 28.2. These results confirm the efficiency of our
algorithms as observed in the previous experiment.

The effect of pruning: Here we investigate the effective of
the pruning techniques. From Tables 2 and 3, over all the
datasets, we can see that the X-pruning strategy (algorithm
X) is more effective than the Y-pruning strategy (algorithm
Y) according to the average update time. For example, in
EmailEnron (row 1 in Table 2) and Orkut datasets (row 1
in Table 3), algorithm X reduces the average update time of
algorithm N by 33.3% and 44.8% respectively. However, in
the same datasets, algorithm Y reduces the average update
time of algorithm N by 14.8% and 22.4% respectively.
This result indicates that the condition of the Y-pruning
is stronger than the condition of the X-pruning in many
real-world graphs. Recall that by Theorem 5, if there is at
least one node u with core number Cu and Yu = Cu in the
induced core subgraph, then the Y-pruning strategy may

TABLE 5
Average |Vc | vs Edge-Updating Strategy

prune some nodes. The condition of Y-pruning strategy
(Yu = Cu) is strong, because if a node has Cu neighbors
whose core numbers are larger than Cu, then this node may
have “another additional neighbor” whose core number is
larger than Cu, thus resulting in that the node u is in a
(Cu +1)-core. Instead, indicating by the experimental result,
the condition of the X-pruning strategy (Xu ≤ Cu + 1)
may be easily satisfied in real-world graphs. This result
also implies that the lower bound of the core number in
Lemma 1 (Yv) is typically very loose for many nodes in real-
world graphs. In addition, we can see that the algorithm
with both X and Y-pruning strategies is more efficient than
the algorithm with only one pruning strategy over all the
datasets.

Effect of edge-updating strategy: Here we show how the
edge-updating strategy affects the performance of the pro-
posed algorithms. Since the efficiency of our algorithms
depends on |Vc|, we study |Vc| under three different
edge-updating strategies which are random edge-updating,
low-core-numbers (HCN) edge updating, and high-core-
numbers (HCN) edge updating. Here an LCN (HCN)
edge denotes an edge whose endpoints have low (high)
core numbers. For all these strategies, we pick 500 edges
for insertion and deletion respectively. Table 5 shows the
results in Gowalla dataset, and similar results can also be
observed from other datasets. As can be seen, by the LCN
edge-updating strategy, our algorithms achieve the largest
average |Vc| while by the HCN edge-updating strategy, our
algorithms get the lowest |Vc|. These results indicate that
the proposed algorithms work well when the underlying
edge-updating distribution favors the HCN edges. In con-
trast, when such a distribution favors the LCN edges, the
performance of our algorithms might be not very good.

Results of a batch of edge updates: In previous exper-
iments, we have shown that the proposed algorithms are
very efficient for the core maintenance problem. These algo-
rithms are extremely useful to incrementally update the
core numbers of the nodes when the graph evolves over
time. Besides the graph with a single edge update, here
we show the performance of our algorithms in a dynamic
graph given a batch of edge updates. Suppose that the
graph has r edge updates at a time interval �t. To main-
tain the core numbers of the nodes, we has to sequentially
invoke our algorithms r times. For the baseline algorithm
(algorithm B), however, we can invoke it once to recompute
the core numbers of all nodes. Since algorithm XY is the
best algorithm for a single edge update, we only compare
algorithm XY with algorithm B. We use the relative running
time as a metric to evaluate algorithm XY. In particular, let
t be the running time of algorithm XY, tB be the running
time of the baseline algorithm (algorithm B). Then, the rel-
ative running time of algorithm XY is defined by δ = t/tB.
Obviously, the smaller δ the algorithm achieves, the more
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(a) (b)

(c) (d)

Fig. 4. Efficiency of algorithm XY under various r .

efficient the algorithm is. In addition, it is worth noting that
if δ < 1, algorithm XY is better than the baseline algorithm,
otherwise it is worse than the baseline algorithm.

To evaluate the effect of r w.r.t. the graph size, we gener-
ate ten large synthetic graphs, where five graphs are based
on the Barabasi-Albert (BA) random graph model [22] and
another five graphs based on the forest fire (FF) model [23].
Specifically, for each random graph model, we produce five
synthetic graphs G1, . . . , G5 with Gi has i million nodes
and 10 × i million edges for i = 1, . . . , 5. Note that here
we only consider the graphs that can be fitted into inter-
nal memory, as our algorithms are very efficient in those
graphs. The results of algorithm XY under different r over
all the synthetic graphs are shown in Fig. 4. From Fig. 4, we
can see that algorithm XY exhibits comparable performance
under both BA and FF random graph models. In general,
δ decreases as the graph size increases, and δ increases as
the increasing r. In addition, we can observe that algorithm
XY significantly outperforms the baseline algorithm when
r = 2500 and the number of edges is no less than 10 million.
Moreover, when r = 10000, our algorithm is still better than
the baseline algorithm when the number of edges is no less
than 50 million. That is to say, if such a graph has r = 10000
edge-updates in a time interval �t, our algorithm outper-
forms the baseline algorithm. Below, we study the effect of
�t in real-world dynamic graphs.

To evaluate the performance of algorithm XY under
different �t, we perform experiments in two real-world
dynamic datasets (Flickr and Youtube). Specifically, we
extract the snapshots of the dynamic graph based on the
time unit ‘hour’. Since the time-granularity of the original
dynamic datasets is ‘day’, we uniformly partition the set of
edge-updates in a day into 24 subsets. After extracting the
snapshots, the average number of edge-updates in one hour
in Flickr and Youtube datasets are 3923 and 625 respec-
tively. Fig. 5 reports the efficiency of algorithm XY under
different �t. As can be seen, algorithm XY is more efficient
than the baseline algorithm (algorithm B) when �t ≤ 2 and
�t ≤ 12 in Flickr and Youtube datasets respectively. Clearly,
our algorithm performs much better in Youtube dataset,
because this dataset evolves slower than the Flickr dataset.
These results indicate that for a batch of edge updates, algo-
rithm XY is more efficient than algorithm B when the graph
is very large and evolves slowly.

Fig. 5. Efficiency of algorithm XY under different �t .

5 RELATED WORK

The k-core decomposition in networks has been extensively
studied in the literature. In [3], Seidman first introduced
the concept of k-core to measure the group cohesion in a
network. The cohesion of k-core increases as k increases.
Recently, the k-core decomposition in graphs has been
used in many applications. Notable examples include visu-
alization of large complex networks [5], [6], [24], [25],
uncovering the topological structure of the Internet [7],
[8], analysis of the structure of biological networks [9]–
[11], studying percolation in random graph [13], [26], and
identifying influential spreader in networks [12].

From an algorithmic perspective, Batagelj and Zaversnik
proposed an O(n+m) algorithm for k-core decomposition in
general graphs [4]. Their algorithm recursively deletes the
node with the lowest degree and uses the bin-sort algorithm
to maintain the order of the nodes. However, this algorithm
has to randomly access the graph, thus it could be ineffi-
cient for the disk-resident graphs. To overcome this issue,
Cheng et al. [14] proposed an efficient k-core decomposition
algorithm for disk-resident graphs. Their algorithm works
in a top-to-down manner to calculate k-core. To make the
k-core decomposition more scalable, Montresor et al. [15]
proposed a distributed algorithm for k-core decomposition
by exploiting the locality property of k-core. All the men-
tioned algorithms are focus on k-core decomposition in
static graph except for [17]. For the dynamic graph, in [17],
Miorandi and Pellegrini applied the O(n+m) algorithm [4]
to recompute the core numbers of the nodes when the
graph is updated, which is inefficient in large graphs. In
this paper, we propose a more efficient algorithm than their
algorithm to maintain the core numbers of the nodes in a
dynamic graph online.

6 CONCLUSION

In this paper, we propose an efficient algorithm for main-
taining the core numbers of nodes in dynamic graphs.
For a node u, we define a notion of induced core sub-
graph Gu, which contains the nodes that are reachable
from u and have the same core number as u. Given a
graph G and an edge (u, v), we find that only the core
numbers of nodes in Gu or Gv or Gu∪v may need to be
updated after inserting/deleing the edge (u, v). Based on
this, first, we introduce a coloring algorithm to identify all
of these nodes. Second, we devise a recoloring algorithm to
determine the nodes whose core numbers definitely need
to be updated. Finally, we update the core numbers of
such nodes by a linear algorithm. In addition, we develop
two pruning strategies, namely X-pruning and Y-pruning,
to further accelerate the algorithm. We perform extensive
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experiments to evaluate the proposed algorithm, and the
results demonstrate the efficiency of our algorithm.
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